Gleitender Durchschnitt Vorhersage Einleitung. Wie Sie vermutlich schauen, betrachten wir einige der primitivsten Ansätze zur Prognose. Aber hoffentlich sind diese zumindest eine lohnende Einführung in einige der Rechenprobleme im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir von Anfang an beginnen und beginnen mit Moving Average Prognosen zu arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist vertraut mit gleitenden durchschnittlichen Prognosen, unabhängig davon, ob sie glauben, sie sind. Alle Studenten tun sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, in dem Sie vier Tests während des Semesters haben werden. Angenommen, Sie haben eine 85 auf Ihrem ersten Test. Was würden Sie für Ihre zweite Testergebnis vorhersagen Was denken Sie Ihre Lehrer würde für Ihren nächsten Test-Ergebnis vorhersagen Was denken Sie, Ihre Freunde könnten für Ihren nächsten Test-Ergebnis vorherzusagen, was Sie denken, Sie Ihre Eltern für Ihren nächsten Test-Ergebnis vorhersagen könnte Unabhängig von Alle die blabbing Sie tun könnten, um Ihre Freunde und Eltern, sie und Ihr Lehrer sind sehr wahrscheinlich zu erwarten, dass Sie etwas im Bereich der 85 erhalten Sie gerade bekommen. Nun, da Sie Ihren Freunden trotz Ihrer Eigenwerbung lässt vermuten, Sie selbst überschätzen und Abbildung Sie weniger für den zweiten Test studieren können und so erhalten Sie einen 73. Nun, was all die betroffen sind und unbeteiligt gehen Erwarten Sie erhalten auf Ihrem dritten Test Es gibt zwei sehr wahrscheinlich Ansätze, damit sie eine Schätzung unabhängig davon entwickeln, ob sie sie mit Ihnen teilen. Sie können zu sich selbst sagen, dieser Kerl ist immer bläst Rauch über seine smarts. Hes gehend, ein anderes 73 zu erhalten, wenn hes glücklich. Vielleicht werden versuchen, die Eltern stärker unterstützen und sagen, quotWell zu sein, haben Sie ein so weit gekommen 85 und 73, so sollten Sie vielleicht Abbildung auf immer über eine (85 73) 2 79. Ich weiß nicht, vielleicht, wenn Sie weniger Party tat Und werent wedelte das Wiesel ganz über dem Platz und wenn Sie anfingen, viel mehr zu studieren, konnten Sie einen höheren score. quot erhalten. Beide dieser Schätzungen sind wirklich gleitende durchschnittliche Prognosen. Der erste verwendet nur Ihre jüngste Punktzahl, um Ihre zukünftige Leistung zu prognostizieren. Dies wird als gleitende Durchschnittsprognose mit einer Datenperiode bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, sauer du all diese Leute eine Art haben auf Ihrem großen Geist Zerschlagung und Sie entscheiden sich für Ihre eigenen Gründe auch im dritten Test zu machen und eine höhere Punktzahl vor Ihrem quotalliesquot zu setzen. Sie nehmen den Test und Ihre Gäste ist eigentlich ein 89 Jeder, einschließlich selbst, ist beeindruckt. So jetzt haben Sie die abschließende Prüfung des Semesters herauf und wie üblich spüren Sie die Notwendigkeit, alle in die Vorhersagen zu machen, wie youll auf dem letzten Test tun. Nun, hoffentlich sehen Sie das Muster. Nun, hoffentlich können Sie das Muster sehen. Was glauben Sie, ist die genaueste Pfeife, während wir arbeiten. Jetzt kehren wir zu unserer neuen Reinigungsfirma zurück, die von Ihrer entfremdeten Halbschwester namens Whistle While We Work begonnen wurde. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Kalkulationstabelle dargestellt werden. Zuerst präsentieren wir die Daten für eine dreidimensionale gleitende Durchschnittsprognose. Der Eintrag für Zelle C6 sollte jetzt sein Sie können diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie der Durchschnitt bewegt sich über die jüngsten historischen Daten, sondern verwendet genau die drei letzten Perioden zur Verfügung für jede Vorhersage. Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngste Vorhersage zu entwickeln. Dies ist definitiv anders als das exponentielle Glättungsmodell. Ive eingeschlossen das quotpast predictionsquot, weil wir sie auf der folgenden Webseite verwenden, um Vorhersagegültigkeit zu messen. Nun möchte ich die analogen Ergebnisse für eine zwei-Periode gleitenden Durchschnitt Prognose zu präsentieren. Der Eintrag für Zelle C5 sollte jetzt sein Sie können diese Zellformel auf die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stücke der historischen Daten für jede Vorhersage verwendet werden. Wieder habe ich die quotpast Vorhersagequot für illustrative Zwecke und für die spätere Verwendung in der Prognose Validierung enthalten. Einige andere Dinge, die wichtig zu beachten sind. Für eine m-Periode gleitende Durchschnittsprognose werden nur die m neuesten Datenwerte verwendet, um die Vorhersage durchzuführen. Nichts anderes ist notwendig. Für eine m-Periode gleitende durchschnittliche Prognose, wenn Sie Quotpast Vorhersagequot, beachten Sie, dass die erste Vorhersage tritt im Zeitraum m 1 auf. Diese beiden Fragen werden sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der Moving Average Funktion. Nun müssen wir den Code für die gleitende Durchschnittsprognose entwickeln, die flexibler genutzt werden kann. Der Code folgt. Beachten Sie, dass die Eingaben für die Anzahl der Perioden sind, die Sie in der Prognose und dem Array der historischen Werte verwenden möchten. Sie können es in beliebiger Arbeitsmappe speichern. Funktion MovingAverage (Historische, NumberOfPeriods) As Single Deklarieren und Variablen Dim Artikel As Variant Dim Zähler As Integer Dim Accumulation As Single Dim HistoricalSize Initialisierung As Integer initialisieren Variablen Zähler 1 Accumulation 0 Bestimmung der Größe der historischen Array HistoricalSize Historical. Count für Zähler 1 Um NumberOfPeriods Summieren der entsprechenden Anzahl der zuletzt beobachteten Werte Accumulation Accumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Der Code wird in der Klasse erklärt. Sie möchten die Funktion in der Tabellenkalkulation positionieren, so dass das Ergebnis der Berechnung erscheint, wo es die folgenden. net. sourceforge. openforecast. models haben sollte. Class MovingAverageModel Ein gleitendes Durchschnittsprognosemodell basiert auf einer künstlich konstruierten Zeitreihe, in der der Wert liegt Für einen gegebenen Zeitraum durch den Mittelwert dieses Werts und die Werte für eine gewisse Anzahl von vorhergehenden und nachfolgenden Zeitperioden ersetzt. Wie Sie vielleicht aus der Beschreibung erraten haben, ist dieses Modell am besten für Zeitreihendaten, d. H. Daten, die sich über die Zeit ändern, geeignet. Zum Beispiel zeigen viele Charts von einzelnen Aktien an der Börse 20, 50, 100 oder 200 Tage gleitende Durchschnitte als Trends zu zeigen. Da der Prognosewert für einen gegebenen Zeitraum ein Durchschnitt der vorangegangenen Perioden ist, wird die Prognose immer scheinbar zurückbleiben, entweder bei Anstieg oder Abnahme der beobachteten (abhängigen) Werte. Wenn beispielsweise eine Datenreihe einen merkbaren Aufwärtstrend aufweist, wird eine gleitende Durchschnittsprognose generell eine Unterbewertung der Werte der abhängigen Variablen liefern. Die gleitende Durchschnittsmethode hat gegenüber anderen Prognosemodellen den Vorteil, dass sie in einer Reihe von Beobachtungen Gipfel und Täler (oder Täler) glättet. Es hat jedoch auch mehrere Nachteile. Insbesondere erzeugt dieses Modell keine tatsächliche Gleichung. Daher ist es nicht alles, was nützlich, da ein Mittel-Langstrecken-Prognose-Tool. Es kann nur zuverlässig verwendet werden, um ein oder zwei Perioden in die Zukunft zu prognostizieren. Das gleitende Durchschnittsmodell ist ein Spezialfall des allgemeineren gewichteten gleitenden Durchschnitts. Im einfachen gleitenden Durchschnitt sind alle Gewichte gleich. Seit: 0.3 Autor: Steven R. Gould Felder geerbt aus der Klasse net. sourceforge. openforecast. models. AbstractForecastingModel MovingAverageModel () Erstellt ein neues gleitendes Durchschnittsprognosemodell. MovingAverageModel (int period) Erstellt ein neues gleitendes Durchschnittsprognosemodell mit dem angegebenen Zeitraum. GetForecastType () Gibt einen oder zwei Wortnamen dieser Art von Prognosemodell zurück. Init (DataSet dataSet) Dient zur Initialisierung des gleitenden Durchschnittsmodells. ToString () Dies sollte überschrieben werden, um eine textuelle Beschreibung des aktuellen Prognosemodells zu liefern, einschließlich, wenn möglich, alle abgeleiteten Parameter. Methoden, die von der Klasse net. sourceforge. openforecast. models. WeightedMovingAverageModel geerbt werden MovingAverageModel Erstellt ein neues gleitendes Durchschnittsprognosemodell. Für ein gültiges zu konstruierendes Modell sollten Sie init aufrufen und einen Datensatz mit einer Reihe von Datenpunkten übergeben, wobei die Zeitvariable initialisiert wird, um die unabhängige Variable zu identifizieren. MovingAverageModel Konstruiert ein neues gleitendes Durchschnittsprognosemodell unter Verwendung des angegebenen Namens als unabhängige Variable. Parameter: independentVariable - der Name der unabhängigen Variablen, die in diesem Modell verwendet werden soll. MovingAverageModel Erstellt ein neues gleitendes Durchschnittsprognosemodell mit dem angegebenen Zeitraum. Für ein gültiges zu konstruierendes Modell sollten Sie init aufrufen und einen Datensatz mit einer Reihe von Datenpunkten übergeben, wobei die Zeitvariable initialisiert wird, um die unabhängige Variable zu identifizieren. Der Periodenwert wird verwendet, um die Anzahl der Beobachtungen zu bestimmen, die verwendet werden, um den gleitenden Durchschnitt zu berechnen. Beispielsweise sollte für einen 50-tägigen gleitenden Durchschnitt, bei dem die Datenpunkte tägliche Beobachtungen sind, der Zeitraum auf 50 gesetzt werden. Der Zeitraum wird auch verwendet, um die Menge zukünftiger Perioden zu bestimmen, die effektiv prognostiziert werden können. Mit einem 50 Tage gleitenden Durchschnitt können wir mit einer Genauigkeit nicht mehr als 50 Tage über den letzten Zeitraum, für den Daten verfügbar sind, prognostizieren. Dies kann vorteilhafter sein, als z. B. ein Zeitraum von 10 Tagen, wo wir nur vernünftigerweise 10 Tage nach der letzten Periode prognostizieren konnten. Parameter: Periode - die Anzahl der Beobachtungen, die verwendet werden, um den gleitenden Durchschnitt zu berechnen. MovingAverageModel Erstellt ein neues gleitendes Durchschnittsprognosemodell unter Verwendung des angegebenen Namens als unabhängige Variable und des angegebenen Zeitraums. Parameter: independentVariable - der Name der unabhängigen Variablen, die in diesem Modell verwendet werden soll. - die Anzahl der Beobachtungen, die zur Berechnung des gleitenden Durchschnitts verwendet werden sollen. Wird verwendet, um das gleitende Durchschnittsmodell zu initialisieren. Diese Methode muss vor jeder anderen Methode in der Klasse aufgerufen werden. Da das gleitende Durchschnittsmodell keine Gleichung für die Prognose ableitet, verwendet dieses Verfahren den Eingabedatensatz, um Prognosewerte für alle gültigen Werte der unabhängigen Zeitvariablen zu berechnen. Vorgabe durch: init in der Schnittstelle ForecastingModel Overrides: init in der Klasse AbstractTimeBasedModel Parameter: dataSet - ein Datensatz von Beobachtungen, mit dem die Prognoseparameter des Prognosemodells initialisiert werden können. GetForecastType Gibt einen oder zwei Wortnamen dieser Art von Prognosemodell zurück. Halten Sie diese kurz. Eine längere Beschreibung sollte in der Methode toString implementiert werden. Dies sollte überschrieben werden, um eine textuelle Beschreibung des aktuellen Prognosemodells zu liefern, wobei nach Möglichkeit alle abgeleiteten Parameter verwendet werden. Bestimmt durch: toString in der Schnittstelle ForecastingModel Overrides: toString in der Klasse WeightedMovingAverageModel Gibt eine Stringdarstellung des aktuellen Prognosemodells und seiner Parameter zurück.
No comments:
Post a Comment